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Abstract. An effective anisotropic t-J model for the “pseudo-ladder” compound CaCu2O3 is proposed
based on recent experimental studies and band structure calculations. Superconducting pairing mediated
by the exchange interaction in the model is investigated as a function of doping away from the anti-
ferromagnetic insulating state. It is shown that strong anisotropy in the electronic spectrum suppresses
superconducting temperature in comparison with conventional copper-oxide superconductors with square
lattices.

PACS. 74.20.-z Theories and models of superconducting state – 74.20.Mn Nonconventional mechanisms
(spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal
Fermi liquid, Luttinger liquid, etc.) – 74.72.-h Cuprate superconductors (high-Tc and insulating parent
compounds)

1 Introduction

The study of ladder compounds reveals interesting physics
caused by a complex interplay between spin and charge
degrees of freedoms in these particular class of strongly
correlated electronic systems (for a review see Ref. [1]).
The most intriguing phenomenon observed in the two-
leg compound Sr14−xCaxCu24O41 is superconductivity at
high pressure [2] which possibly correlates with closing
of the spin gap [3] (however, see also Ref. [4], where the
closing of the spin gap has been doubted). On the other
hand, under high pressure a crossover from one to two
dimensions is observed [5] which shows that the supercon-
ductivity in this system occurs in a highly anisotropic two
dimensional CuO2 plane.

In recent experimental and theoretical studies of the
electronic structure of the “pseudo-ladder” cuprate com-
pound CaCu2O3 an unusual non-planar hole distribution
was observed at variance with conventional ladder com-
pounds [6]. It results from the strong interlayer coupling
which is responsible for the missing spin gap generic for
other two-leg ladder cuprates [7]. Contrary to the undoped
two-leg ladder compounds, the undoped CaCu2O3 is an
antiferromagnet (although with a relatively low Néel tem-
perature TN = 25 K [7]) as in other quasi-two-dimensional
parent cuprates. Therefore this compound can be consid-
ered as an anisotropic bilayer compound and a candidate
for high temperature superconductivity at hole doping
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away from the antiferromagnetic insulating state inves-
tigated so far.

In the present paper we propose an effective
anisotropic t-J model and calculate the superconducting
transition temperature as a function of doping. It is shown
that anisotropy of the electronic spectrum in the copper-
oxide plane suppresses the superconductivity mediated by
the exchange interaction in comparison with conventional
cuprates having square lattice.

2 Effective t-J model

The crystal structure of the CaCu2O3 compound can be
viewed as corner-shared CuO2 zigzag chains running along
the b-axis which are tilted by nearly 29◦ from a straight
Cu-O-Cu bond with the neighboring zigzag chains form-
ing this way positively and negatively buckled ladders with
“kinked” rungs in a-direction (see Fig. 1). This layers are
packed along c-direction in a three-dimensional crystal.
Each stack of pseudoladders forms a bilayer. Taking into
account the results of recent experimental and theoret-
ical studies of the electronic structure of this “pseudo-
ladder” cuprate compound [6], we propose the following
anisotropic t-J model:

Ht−J = −
∑

ijσαβ

tαβ
ij ã+

iασãjβσ

+
1
2

∑
ijσαβ

Jαβ
ij

(
SiαSjβ − 1

4
niαnjβ

)
, (1)
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Fig. 1. The crystal structure of the undoped CaCu2O3 com-
pound [6].

where ã+
iασ = a+

iασ(1 − niα,−σ) are projected elec-
tron operators, niα =

∑
σ ã+

iασãiασ and Sγ
iα =

(1/2)
∑

s,s′ ã+
iαsσ

γ
s,s′ ãiαs′ – are the number and the spin

operators for the lattice site iα = Ri + αa, where the co-
ordinates in the (b, c)-plane are defined as Ri = ibb + icc,
while the parameter α(β) = 0, 1 numbers two nearest
neighbor planes along the “kinked” rung in the a-direction
and 2a, b, c are the corresponding lattice parameters. The
hopping integrals tαβ

ij and the exchange energy Jαβ
ij can

be written in the form

tαβ
ij = δαβtbδji±b

+ (1 − δαβ)(taδij − tcδji±c + t′δji±b), (2)

Jαβ
ij = δαβ(Jbδji±b + Jcδji±c) + (1 − δαβ)Jaδij . (3)

Here the nearest neighbor hopping and exchange param-
eters according to [6] can be estimated as (in meV):

tb = 430, tc = 140, ta = 50, t′ = 9,

Jb = 170, Jc = 20, Ja = 50. (4)

The hopping parameter and the exchange interaction
along the chains are close to those of the related lad-
der compound SrCu2O3 [8], while the interchain couplings
are quite different. The electronic dispersions along the
several symmetry directions are shown in Figure 2. The
tight binding approximation, equation (2), describes the
LDA spectrum reasonably well, except the small split-
tings along the Γ → Y and Γ → Z directions due to
weak interladder interactions in (a, b) plane which we ig-
nore for the sake of simplicity. The corresponding den-
sity of electronic state for the tight binding model is
shown in Figure 3. To take into account rigorously the
projected character of electron operators, we employ the
Hubbard operator (HO) technique. The HO are defined
as Xn,m

iα = |iα, n〉〈iα, m| for three possible states at a lat-
tice site iα: |iα, n〉 = |iα, 0〉, |iα, σ〉 for an empty site and
for a singly occupied site by an electron with spin σ/2

Fig. 2. The tight binding spectrum of the model, equa-
tions (2), (4) in units of t = tb = 430 meV.

Fig. 3. The density of state for the spectrum shown in Fig-
ure 2.

(σ = ±1, σ̄ = −σ). They obey the completeness relation

X00
iα +

∑
σ

Xσσ
iα = 1, (5)

which rigorously preserves the constraint of no double oc-
cupation at each lattice site by any quantum state |iα, n〉.
In terms of the HO the model (1) reads:

Ht−J = −µ
∑
iσα

Xσσ
iα −

∑
ijσαβ

tαβ
ij Xσ0

iα X0σ
jβ

+
1
4

∑
ijσαβ

Jαβ
ij

(
Xσσ̄

iα X σ̄σ
jβ − Xσσ

iα X σ̄σ̄
jβ

)
. (6)

Here we have introduced the chemical potential µ which
depends on the average number of electrons on one site:

n =
∑

σ

〈Xσσ
iα 〉, (7)

which does not depends on α = 0, 1 since the two planes
within a bilayer are equivalent. The model (6) describes
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two anisotropic copper-oxygen planes which can be called
as a “pseudo-ladder” compound due to quite a large cou-
pling of the ladders along the c-axis [6]. Therefore, to es-
timate the superconducting transition temperature Tc in
the model we can apply the theory of superexchange pair-
ing developed in [9,10] for a copper-oxygen plane.

3 Green functions

To discuss the superconducting pairing within the
model (6) we consider the matrix Green function (GF)

Ĝiα,jβ,σ (t − t′) =
〈〈

Ψiασ(t)|Ψ †
jβσ(t′)

〉〉
, (8)

in terms of the Nambu operators:

Ψiασ =
(

X0σ
iα

X σ̄0
iα

)
, Ψ †

jβσ =
(
Xσ0

jβ X0σ̄
jβ

)
,

where Zubarev’s notation for the anticommutator Green
function (8) has been used [11]. To simplify the no-
tation we omit further the subscripts α, β by taking
iα ≡ i, jβ ≡ j .

By differentiating the GF (8) with respect to the time t
we get for its ω-Fourier component the following equation

ωĜijσ(ω) = δijQ̂ασ +
〈〈

Ẑiσ | Ψ †
jσ

〉〉
ω

, (9)

where Ẑiσ = [Ψiσ, H ] and Q̂α,σ = 〈{Ψiασ, Ψ †
iασ}〉 =

〈X00
iα + Xσσ

iα 〉 = Qτ̂0 . We consider a paramagnetic state
and therefore the correlation function in equation (9)
Qα,σ = 〈1 − X σ̄σ̄

iα 〉 = 1 − n/2 depends only on the av-
erage number of electrons n.

To close the system of equations for the single-electron
GF (9) we apply the projection technique for the equa-
tion of motion for GF. We project the many–particle GF
in (9) on the single-electron GF by introducing the irre-
ducible (irr) part of Ẑiσ operator which is orthogonal to
the single-electron operator:
〈〈

Ẑiσ | Ψ †
jσ

〉〉
=
∑

l

Êilσ

〈〈
Ψlσ | Ψ †

jσ

〉〉
+
〈〈

Ẑ
(irr)
iσ | Ψ †

jσ

〉〉
,

〈{
Ẑ

(irr)
iσ , Ψ †

jσ

}〉
=
〈
Ẑ

(irr)
iσ Ψ †

jσ + Ψ †
jσẐ

(irr)
iσ

〉
= 0. (10)

From this equation the definition of the energy matrix
follows as

Êijσ =
〈{

[Ψiσ, H ], Ψ †
jσ

}〉
Q−1. (11)

The frequency matrix (11) defines the zero-order GF in
the generalized MFA:

Ĝ0
ijσ(ω) = Q

{
ωτ̂0δij − Êijσ

}−1

, (12)

where τ̂0 is the Pauli matrix.
In the present study we neglect self-energy correc-

tions which stem from the essentially many-particle GF

〈〈Ẑ(irr)
iσ | Ψ †

jσ〉〉 in equation (10) defined by the irreducible

part of the operator Z
(irr)
iσ . As was shown in [9] these cor-

rections, though giving quite a substantial contribution to
the electronic spectrum and superconducting pairing, do
not change qualitatively the results for the superconduct-
ing transition temperature Tc. Therefore, for a compara-
tive study of superconductivity in compounds with nearly
tetragonal, “symmetric”, 2D copper-oxide planes and the
highly anisotropic “pseudo-ladder” compound under con-
sideration, we can apply the MFA given by the zero-order
GF (12).

To calculate the energy matrix (11) we should consider
the equation of motion for the HO:(

i
d

dt
+ µ

)
X0σ

i = −
∑

l

tilBiσσ′X0σ′
l

+
1
2

∑
l

Jil(Blσσ′ − δσσ′ )X0σ′
i , (13)

where we introduced the operator

Biσσ′ = (X00
i + Xσσ

i )δσ′σ + X σ̄σ
i δσ′σ̄

=
(

1 − 1
2
ni + σSz

i

)
δσ′σ + Sσ̄

i δσ′σ̄. (14)

The Bose-like operator (14) describes electron scatter-
ing on spin and charge fluctuations caused by the non-
fermionic commutation relations for the HO (the first term
in (13) – the kinematic interaction) and by the exchange
spin-spin interaction (the second term in (13)).

By using equation of motion (13) and performing
the corresponding commutations for the Hubbard oper-
ators in the energy matrix (11) we can write the nor-
mal, E11

iα,jβ,σ = −E22
jβ,iα,σ̄, and anomalous, E12

iα,jβ,σ =
(E21

jβ,iα,σ)+, matrix components in the form:

E11
iα,jβ,σ = −tαβ

ij

1
Q

χαβ
ij − 1

2Q
Jαβ

ij

〈
X σ̄0

jβ X0σ̄
iα

〉
+ δijδαβ(−µ + δµ), (15)

δµ =
1
Q

∑
lγ

(
tαγ
il

〈
X σ̄0

iα X0σ̄
lγ

〉
+

1
2
Jαγ

il (χαγ
il − 1)

)
,

E12
iα,jβ,σ = Jαβ

ij

1
Q

〈
X0σ

iα X0σ̄
jβ

〉
,

− δijδαβ
2
Q

∑
lγ

tαγ
il

〈
X0σ

iα X0σ̄
lγ

〉
, (16)

where we introduced the spin-charge correlation function

χαβ
ij =

〈(
1 − niα

2

)(
1 − njβ

2

)〉
+ 〈SiαSjβ〉

� Q2 + 〈SiαSjβ〉 = Q2 + χs
iα,jβ . (17)

In the last approximate expression we neglect the charge-
charge fluctuations 〈δniαδnjβ〉, δniα = niα − 〈niα〉. We
stress, however, that the short-range spin-spin antiferro-
magnetic correlation, χs

iα,jβ = 〈SiαSjβ〉, gives a sub-
stantial contribution to the narrowing of the quasiparticle
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bandwidth in the low doping region and cannot be disre-
garded (see [9]).

By introducing the q-representation in (b, c)-plane for
the GF (12) and the energy matrix (11) as follows

Ĝ0
iα,jβ,σ(ω) =

1
N

∑
q

eiq(Ri−Rj) Ĝ0
αβ,σ(q, ω), (18)

where N is the number of lattice sites in one (b, c)-plane,
we can write the GF (12) in the form

Ĝ0
αβ,σ(q, ω) = Q

{
ωτ̂0δαβ − Êαβ,σ(q)

}−1

=

(
Gαβ(q, ω) Fαβ,σ(q, ω)

F †
βα,σ(q, ω) −Gβα(q,−ω)

)
, (19)

where the energy matrix is given by the equation:

Êαβ,σ(q) =

(
εαβ(q) ∆αβ,σ(q)

∆∗
βα,σ(q) −εβα(q)

)
. (20)

The normal state energy matrix εαβ(q) which does not
depend on spin σ and the gap matrix which is an odd
function of the spin σ: ∆αβ,σ(q) = −∆αβ,σ̄(q) , can be
written in the form:

εαβ(q) = δαβ ε(q) − (1 − δαβ) t̃⊥(q)

= −δαβ 2t̃b cos qy + (1 − δαβ)(t̃a − 2t̃c cos qz

+ 2t̃′ cos qy) − µ − δµ. (21)

∆αβ,σ(q) = δαβ ∆σ(q) + (1 − δαβ)∆σ,⊥ , (22)

where for calculation of the quasiparticle energy for one
plane ε(q) and the interplane coupling t̃⊥(q) we have
used equation (15) and introduced the renormalized hop-
ping parameters t̃α. For the gap functions we get from
equation (16) the following equations for the in-plane gap
(α = β) and the rung gap (α �= β) :

∆σ(q) =
1

NQ

∑
k

J(q − k)
〈
X0σ

kαX0σ̄
−kα

〉
,

− 2
NQ

∑
kγ

tαγ(k)
〈
X0σ

kαX0σ̄
−kγ

〉
, (23)

∆σ,⊥ = Ja
1

NQ

∑
k

〈
X0σ

kαX0σ̄
−kᾱ

〉
. (24)

To calculate the normal, Gαβ(q, ω) , and the anomalous,
Fαβ,σ(q, ω) components of the GF in equation (19) we
consider the (2 × 2) matrix equations:

{ωδαβ − εαβ(q)}Gβα(q, ω) − ∆αβ,σ(q)F †
βα,σ(q, ω) = Q,

∆∗
βα,σ(q)Gβα(q, ω) − {ωδαβ + εαβ(q)}F †

βα,σ(q, ω) = 0.

After some algebra we get the following solution for
the GF:

Gαβ(q, ω) = Q
Aαβ(q, ω)

[ω2 − E2
1 (q)][ω2 − E2

2(q)]
, (25)

F †
αβ,σ(q, ω) = Q

Bαβ(q, ω)
[ω2 − E2

1(q)][ω2 − E2
2(q)]

, (26)

where the quasiparticle energy for the two bands in the
superconducting state are

E2
1(2)(q) = ε2

1(2)(q) + ∆2
1(2)σ(q), (27)

ε1(2)(q) = ε(q) ± t̃⊥(q), ∆1(2)σ(q) = ∆σ(q) ∓ ∆σ,⊥.

The coefficient in the numerator of equations (25, 26) for
the diagonal GF reads

Aαα(q, ω) = (ω − ε(q))
[
(ω + ε(q))2 − t̃2⊥(q)

]
− [(ω + ε(q))(∆2

σ(q) + ∆2
σ,⊥) + 2t̃⊥(q)∆σ,⊥∆σ(q)

]
,

and for the nondiagonal GF equals to

Aαᾱ(q, ω) = −t̃⊥(q)
[
(ω + ε(q))2 − t̃2⊥(q)

]
+
[
(ω + ε(q))2∆σ,⊥∆σ(q) + t̃⊥(q)(∆2

σ(q) + ∆2
σ,⊥))

]
.

The coefficient in the numerator of equation (26) for the
anomalous diagonal GF reads

Bαα(q, ω) = −2∆σ,⊥ t̃⊥(q) ε(q)

+
[
ω2 − (ε(q)2 + t̃2⊥(q) + ∆σ(q)2 − ∆2

σ,⊥)
]
∆σ(q),

and for the anomalous nondiagonal GF equals to

Bαᾱ(q, ω) = −2∆σ(q) t̃⊥(q) ε(q)

+
[
ω2 − (ε(q)2 + t̃2⊥(q) + ∆σ(q)2 − ∆2

σ,⊥)
]
∆σ,⊥.

As we see from the equations for the GF and the quasi-
particle spectra, equation (27), the coupling between the
planes due to the effective interaction t̃⊥(q) in equa-
tion (21) results in the splitting of the two bands in the
bilayer: ε1(2)(q) = ε(q) ± t̃⊥(q) , while the exchange cou-
pling between the planes, Ja , results in the gap splitting:
∆1(2)σ(q) = ∆σ(q) ∓ ∆σ,⊥ . Therefore, to study super-
conductivity in the model we should consider a system of
equations for the two gaps, ∆1(2)σ(q).

4 Gap equation

To obtain a self-consistent system of equations for the su-
perconducting gaps, equations (23, 24), we have to calcu-
late the anomalous correlation function:

〈Xσ0
βkX σ̄0

−kα〉 =

+∞∫
−∞

dω

eω/T + 1

[
− 1

π
ImF †

αβ,σ(k, ω + iδ)
]

.

By using GF (26) and taking into account the symmetry
relation for the anomalous correlation functions:〈

Xσ0
βkX σ̄0

−kα

〉
= − 〈X σ̄0

−kαXσ0
βk

〉
= − 〈X0σ

βkX0σ̄
−kα

〉
,

we obtain the following equation for the in-plane gap (23)

∆σ(q) =
1
N

∑
n,k

J(q − k)
∆n,σ(k)
4En(k)

tanh
En(k)

2T
, (28)
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where the sum over n = 1, 2 runs over two bands with
the quasiparticle energy (27), and an analogous equa-
tion for the rung gap, equation (24). In equation (28) we
disregarded the contribution from the kinematic interac-
tion, the second term in equation (23), since it gives a
q-independent contribution to the in-plane gap. This re-
sults in a significant double occupancy of one lattice site
which is energetically unfavorable for a strongly correlated
system such as considered here.

From equations (24), (28) we obtain the following
equation for the gaps in two bands, n = 1, 2 :

∆n,σ(q) =
1
N

∑
m,k

Jn,m(q − k)
∆m,σ(k)
4Em(k)

tanh
Em(k)

2T
,

(29)
where the exchange interaction

Jnn(q) = J(q) + Ja, Jn�=m(q) = J(q) − Ja,

J(q) = 2Jb cos qyb + 2Jc cos qzc. (30)

In deriving equation (29) we neglected small contributions
of the order of (∆σ(q)∆σ,⊥/ε(q)t̃⊥(q)) which appear in
the equation for the rung gap, ∆σ,⊥.

5 Results and discussions

To calculate Tc we should consider a linear system of equa-
tions (29) for the gaps by neglecting the gap contribution
in the quasipartical energy: En(q) = εn(q). The highest
eigenvalue of this linear equation determines the supercon-
ducting temperature Tc, while the eigenfunction should
give the symmetry of the order parameter of the super-
conducting state. However, a straightforward solution of
the problem is difficult to obtain. Instead we employ a
variational ansatz for the gap function suggested by the
q-dependence of the pairing interaction (30). This is a
conventional approach in the theory of superconductiv-
ity. Thus, we consider the following two band gap model
(n = 1, 2):

∆n,σ(k) = ∆y cos ky + ∆z cos kz + ∆x (−1)n, (31)

where we used the dimensionless wave vectors: (−π ≤
ky, kz ≤ π) . By using this model in the linearized gap
equation (29) we obtain the following system of equations
for the parameters ∆ξ (ξ = y, z, x) :

∆ξ =
∑

ν

Fξν(T )∆ν . (32)

The function Fξν(T ) is given by the equation

Fξν(T ) =
1
N

∑
m,q

fξν(m,q)
1

2εm(q)
tanh

εm(q))
2T

, (33)

where the matrix fξν reads

fξν(n,q) =


Jb cos2 qy Jb cos qy cos qz Jb cos qy(−1)n

Jc cos qy cos qz Jc cos2 qz Jc cos qz(−1)n

1
2Ja(−1)n cos qy

1
2Ja(−1)n cos qz

1
2Ja


 .

Fig. 4. Tc(µ) for the model of hole doped CaCu2O3, equa-
tions (1–4). Tc and µ are given in units of t̃ � 2500 K.

Fig. 5. Band filling vs. chemical potential, n(µ).

The nonzero solution of the linear system of equations (32)
exists when the determinant of the matrix ||Fξν(Tc) −
δξ,ν || equals to zero. The results of a numerical solution
of this equation for Tc as a function of the chemical poten-
tial µ are shown in Figure 4 for the following parameters
of the model: t̃b = t̃, t̃c = 0.323t̃, t̃a = 0.114t̃, t̃′ = 0.02t̃,
Jb = 0.8t̃, Jc = 0.11t̃, Ja = 0.22t̃ . Tc and µ are measured
in units of t̃ = tb/2 � 2500 K. This renormalization by a
factor of two of the LDA hopping parameters takes into
account the band narrowing due to strong correlation as
follows from equation (15). It depends on the doping (in
the simple Hubbard-I approximation as 1 − n/2) which
has been ignored for the small doping range considered
here (close to half-filling, n = 1).

The maximum for Tc � 0.02t̃ � 50 K occurs at µ � 1.5
that corresponds to the doping δ = 1−n � 0.12 as follows
from the n(µ) dependence shown in Figure 5. We consider
this estimate of Tc as an optimistic upper bound of the
superconducting temperature which should be suppressed
by ferromagnetic interladder interaction (in (a, b)-plane)
as well as fluctuation effects beyond the mean field ap-
proximation used here. The ratio of the gap components
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are: ∆a/∆b = −0.1 and ∆c/∆b = −0.1 which shows
a weak coupling in the rung and along the c-axis. At
small doping the gap exhibits no nodes in both bands
as a consequence of strong anisotropy of the dispersion
and of the exchange interaction. In this context an ob-
servation of the Hebel–Slichter peak in the NMR exper-
iments [4]) in the related highly anisotropic ladder com-
pound Sr14−xCaxCu24O41 is in accord with our finding. A
more comprehensive theoretical analysis of superconduc-
tivity within our approach for ladder compounds will be
given elsewhere.

To summarize, in the present paper we considered
a theory for superconducting pairing due to the ex-
change interaction in the doped “pseudo-ladder” com-
pound CaCu2O3. The calculations show that in spite
of the large coupling along the chain direction (Jb �
170 meV) the anisotropy of electron spectra suppresses
Tc which explains experimental findings that the highest
superconducting Tc values are observed in cuprates with
an ideal square lattice as in the mercury compounds (see,
e.g., [12]). The maximum of Tc is obtained at the highest
density of state close to the Van Hove singularity which
is achieved at relatively small hole doping. This might be
realized if one could partially substitute the divalent Ca2+

ions for monovalent alkaline ions, say e.g. Na+, in our title
compound.
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